Quick-reference guide to the 17 statistical hypothesis tests that you need in applied machine learning, with sample code in Python.
There are 100s of hypothesis testing types existing in field of statistics but we will need the 17 statistical hypothesis testing that we would use in applied machine learning and the machine learning projects.
flowchart TD
A[STATISTICAL HYPOTHESIS] --> B(NORMALITY TESTS);
A[STATISTICAL HYPOTHESIS] --> C(CORRELATION TESTS);
A[STATISTICAL HYPOTHESIS] --> D(STATIONARY TESTS);
A[STATISTICAL HYPOTHESIS] --> E(PARAMETRIC STATISTICAL TESTS);
A[STATISTICAL HYPOTHESIS] --> F(NON-PARAMETRIC STATISTICAL TESTS);
- NORMALITY TESTS
flowchart TD A[NORMALITY TESTS] --> B(Shapiro-Wilk Tests) A[NORMALITY TESTS] --> C(D'Agostino's K^2 Test) A[NORMALITY TESTS] --> D(Anderson-Darling Test)
- CORRELATION TESTS
flowchart TD A[CORRELATION TESTS] --> B(Pearson's Correlation Coefficient) A[CORRELATION TESTS] --> C(Spearman's Rank Correlation) A[CORRELATION TESTS] --> D(Kendall's Rank Correlation) A[CORRELATION TESTS] --> E(Chi-Squared Test)
- STATIONARY TESTS
flowchart TD A[STATIONARY TESTS] --> B(Augmented Dickey-Fuller) A[STATIONARY TESTS] --> C(Kwiatkouski-Phillips-Sehmidt-Shin)
- PARAMETRIC STATISTICAL HYPOTHESIS TESTS
flowchart TD A[PARAMETRIC STATISTICAL HYPOTHESIS TESTS] --> B(Student's t-test) A[PARAMETRIC STATISTICAL HYPOTHESIS TESTS] --> C(Paired Student's t-test) A[PARAMETRIC STATISTICAL HYPOTHESIS TESTS] --> D(Analysis of Variance test/ANOVA) A[PARAMETRIC STATISTICAL HYPOTHESIS TESTS] --> E(Repeated Measures ANOVA test)
- NON-PARAMETRIC STATISTICAL HYPOTHESIS TESTS
flowchart TD A[NON-PARAMETRIC STATISTICAL HYPOTHESIS TESTS] --> B(Mann-Whitney U test) A[NON-PARAMETRIC STATISTICAL HYPOTHESIS TESTS] --> C(Wilcoxon Signed-Rank test) A[NON-PARAMETRIC STATISTICAL HYPOTHESIS TESTS] --> D(Kruskal-Wallis H Test) A[NON-PARAMETRIC STATISTICAL HYPOTHESIS TESTS] --> E(Friedman Test)