-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
603 lines (545 loc) · 31.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import pandas as pd
import numpy as np
import keras
import os
import soundfile as sf
import tensorflow as tf
import librosa
from sklearn.metrics import roc_auc_score
from tqdm import tqdm
from sklearn.preprocessing import LabelEncoder
from mixup_layer import MixupLayer
from subcluster_adacos import SCAdaCos
from sklearn.mixture import GaussianMixture
from scipy.stats import hmean
class LogMelSpectrogram(tf.keras.layers.Layer):
"""
Compute log-magnitude mel-scaled spectrograms.
https://towardsdatascience.com/how-to-easily-process-audio-on-your-gpu-with-tensorflow-2d9d91360f06
"""
def __init__(self, sample_rate, fft_size, hop_size, n_mels,
f_min=0.0, f_max=None, **kwargs):
super(LogMelSpectrogram, self).__init__(**kwargs)
self.sample_rate = sample_rate
self.fft_size = fft_size
self.hop_size = hop_size
self.n_mels = n_mels
self.f_min = f_min
self.f_max = f_max if f_max else sample_rate / 2
self.mel_filterbank = tf.signal.linear_to_mel_weight_matrix(
num_mel_bins=self.n_mels,
num_spectrogram_bins=fft_size // 2 + 1,
sample_rate=self.sample_rate,
lower_edge_hertz=self.f_min,
upper_edge_hertz=self.f_max)
def build(self, input_shape):
self.non_trainable_weights.append(self.mel_filterbank)
super(LogMelSpectrogram, self).build(input_shape)
def call(self, waveforms):
"""Forward pass.
Parameters
----------
waveforms : tf.Tensor, shape = (None, n_samples)
A Batch of mono waveforms.
Returns
-------
log_mel_spectrograms : (tf.Tensor), shape = (None, time, freq, ch)
The corresponding batch of log-mel-spectrograms
"""
def _tf_log10(x):
numerator = tf.math.log(x)
denominator = tf.math.log(tf.constant(10, dtype=numerator.dtype))
return numerator / denominator
def power_to_db(magnitude, amin=1e-10, top_db=80.0):
"""
https://librosa.github.io/librosa/generated/librosa.core.power_to_db.html
"""
ref_value = 1.0 # tf.reduce_max(magnitude)
log_spec = 10.0 * _tf_log10(tf.maximum(amin, magnitude))
log_spec -= 10.0 * _tf_log10(tf.maximum(amin, ref_value))
# log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec) - top_db)
return log_spec
spectrograms = tf.signal.stft(waveforms,
frame_length=self.fft_size,
frame_step=self.hop_size,
pad_end=False)
magnitude_spectrograms = tf.abs(spectrograms)
mel_spectrograms = tf.matmul(tf.square(magnitude_spectrograms),
self.mel_filterbank)
log_mel_spectrograms = power_to_db(mel_spectrograms)
# add channel dimension
log_mel_spectrograms = tf.expand_dims(log_mel_spectrograms, 3)
return log_mel_spectrograms
def get_config(self):
config = {
'fft_size': self.fft_size,
'hop_size': self.hop_size,
'n_mels': self.n_mels,
'sample_rate': self.sample_rate,
'f_min': self.f_min,
'f_max': self.f_max,
}
config.update(super(LogMelSpectrogram, self).get_config())
return config
def mixupLoss(y_true, y_pred):
return tf.keras.losses.categorical_crossentropy(y_true=y_pred[:, :, 1], y_pred=y_pred[:, :, 0])
def length_norm(mat):
norm_mat = []
for line in mat:
temp = line / np.math.sqrt(sum(np.power(line, 2)))
norm_mat.append(temp)
norm_mat = np.array(norm_mat)
return norm_mat
def model_emb_cnn(num_classes, raw_dim, n_subclusters):
data_input = tf.keras.layers.Input(shape=(raw_dim, 1), dtype='float32')
label_input = tf.keras.layers.Input(shape=(num_classes), dtype='float32')
y = label_input
x = data_input
l2_weight_decay = tf.keras.regularizers.l2(1e-5)
x_mix, y = MixupLayer(prob=1)([x, y])
# FFT
x = tf.keras.layers.Lambda(lambda x: tf.math.abs(tf.signal.fft(tf.complex(x[:,:,0], tf.zeros_like(x[:,:,0])))[:,:int(raw_dim/2)]))(x_mix)
x = tf.keras.layers.Reshape((-1,1))(x)
x = tf.keras.layers.Conv1D(128, 256, strides=64, activation='linear', padding='same',
kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
x = tf.keras.layers.Conv1D(128, 64, strides=32, activation='linear', padding='same',
kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
x = tf.keras.layers.Conv1D(128, 16, strides=4, activation='linear', padding='same',
kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(128, kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
x = tf.keras.layers.Dense(128, kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
x = tf.keras.layers.Dense(128, kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
x = tf.keras.layers.Dense(128, kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
emb_fft = tf.keras.layers.Dense(128, name='emb_fft', kernel_regularizer=l2_weight_decay, use_bias=False)(x)
# LOG-MEL
x = tf.keras.layers.Reshape((160000,))(x_mix)
x = LogMelSpectrogram(16000, 1024, 256, 128, f_max=8000)(x)
x = tf.keras.layers.Lambda(lambda x: x - tf.math.reduce_mean(x, axis=1, keepdims=True))(x) # CMN-like normalization
x = tf.keras.layers.BatchNormalization(axis=-2)(x)
# first block
x = tf.keras.layers.Conv2D(16, 7, strides=2, activation='linear', padding='same',
kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
x = tf.keras.layers.MaxPooling2D(3, strides=2)(x)
# second block
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
xr = tf.keras.layers.Conv2D(16, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(xr)
xr = tf.keras.layers.Conv2D(16, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
x = tf.keras.layers.Add()([x, xr])
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
xr = tf.keras.layers.Conv2D(16, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(xr)
xr = tf.keras.layers.Conv2D(16, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
x = tf.keras.layers.Add()([x, xr])
# third block
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
xr = tf.keras.layers.Conv2D(32, 3, strides=(2, 2), activation='linear', padding='same',
kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(xr)
xr = tf.keras.layers.Conv2D(32, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x)
x = tf.keras.layers.Conv2D(kernel_size=1, filters=32, strides=1, padding="same",
kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.Add()([x, xr])
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
xr = tf.keras.layers.Conv2D(32, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(xr)
xr = tf.keras.layers.Conv2D(32, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
x = tf.keras.layers.Add()([x, xr])
# fourth block
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
xr = tf.keras.layers.Conv2D(64, 3, strides=(2, 2), activation='linear', padding='same',
kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(xr)
xr = tf.keras.layers.Conv2D(64, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x)
x = tf.keras.layers.Conv2D(kernel_size=1, filters=64, strides=1, padding="same",
kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.Add()([x, xr])
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
xr = tf.keras.layers.Conv2D(64, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(xr)
xr = tf.keras.layers.Conv2D(64, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
x = tf.keras.layers.Add()([x, xr])
# fifth block
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
xr = tf.keras.layers.Conv2D(128, 3, strides=(2, 2), activation='linear', padding='same',
kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(xr)
xr = tf.keras.layers.Conv2D(128, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
x = tf.keras.layers.MaxPooling2D((2, 2), padding='same')(x)
x = tf.keras.layers.Conv2D(kernel_size=1, filters=128, strides=1, padding="same",
kernel_regularizer=l2_weight_decay, use_bias=False)(x)
x = tf.keras.layers.Add()([x, xr])
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(x)
xr = tf.keras.layers.Conv2D(128, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
xr = tf.keras.layers.LeakyReLU(alpha=0.1)(xr)
xr = tf.keras.layers.Conv2D(128, 3, activation='linear', padding='same', kernel_regularizer=l2_weight_decay, use_bias=False)(xr)
x = tf.keras.layers.Add()([x, xr])
x = tf.keras.layers.MaxPooling2D((20, 1), padding='same')(x)
x = tf.keras.layers.Flatten(name='flat')(x)
x = tf.keras.layers.BatchNormalization()(x)
emb_mel = tf.keras.layers.Dense(128, kernel_regularizer=l2_weight_decay, name='emb_mel', use_bias=False)(x)
# combine embeddings
x = tf.keras.layers.Concatenate(axis=-1)([emb_fft, emb_mel])
output = SCAdaCos(n_classes=num_classes, n_subclusters=n_subclusters)([x, y, label_input])
loss_output = tf.keras.layers.Lambda(lambda x: tf.stack(x, axis=-1))([output, y])
return data_input, label_input, loss_output
########################################################################################################################
# Load data and compute embeddings
########################################################################################################################
target_sr = 16000
# load train data
print('Loading train data')
categories = os.listdir("./dev_data")
if os.path.isfile(str(target_sr) + '_train_raw.npy'):
train_raw = np.load(str(target_sr) + '_train_raw.npy')
train_ids = np.load('train_ids.npy')
train_files = np.load('train_files.npy')
train_atts = np.load('train_atts.npy')
train_domains = np.load('train_domains.npy')
else:
train_raw = []
train_ids = []
train_files = []
train_atts = []
train_domains = []
dicts = ['./dev_data/', './eval_data/']
eps = 1e-12
for label, category in enumerate(categories):
print(category)
for dict in dicts:
for count, file in tqdm(enumerate(os.listdir(dict + category + "/train")),
total=len(os.listdir(dict + category + "/train"))):
file_path = dict + category + "/train/" + file
wav, fs = sf.read(file_path)
raw = librosa.core.to_mono(wav.transpose()).transpose()[:10 * target_sr]
train_raw.append(raw)
train_ids.append(category + '_' + file.split('_')[1])
train_files.append(file_path)
train_domains.append(file.split('_')[2])
train_atts.append('_'.join(file.split('.wav')[0].split('_')[6:]))
# reshape arrays and store
train_ids = np.array(train_ids)
train_files = np.array(train_files)
train_raw = np.expand_dims(np.array(train_raw, dtype=np.float32), axis=-1)
train_atts = np.array(train_atts)
train_domains = np.array(train_domains)
np.save('train_ids.npy', train_ids)
np.save('train_files.npy', train_files)
np.save('train_atts.npy', train_atts)
np.save('train_domains.npy', train_domains)
np.save(str(target_sr) + '_train_raw.npy', train_raw)
# load evaluation data
print('Loading evaluation data')
if os.path.isfile(str(target_sr) + '_eval_raw.npy'):
eval_raw = np.load(str(target_sr) + '_eval_raw.npy')
eval_ids = np.load('eval_ids.npy')
eval_normal = np.load('eval_normal.npy')
eval_files = np.load('eval_files.npy')
eval_atts = np.load('eval_atts.npy')
eval_domains = np.load('eval_domains.npy')
else:
eval_raw = []
eval_ids = []
eval_normal = []
eval_files = []
eval_atts = []
eval_domains = []
eps = 1e-12
for label, category in enumerate(categories):
print(category)
for count, file in tqdm(enumerate(os.listdir("./dev_data/" + category + "/test")),
total=len(os.listdir("./dev_data/" + category + "/test"))):
file_path = "./dev_data/" + category + "/test/" + file
wav, fs = sf.read(file_path)
raw = librosa.core.to_mono(wav.transpose()).transpose()[:10 * target_sr]
eval_raw.append(raw)
eval_ids.append(category + '_' + file.split('_')[1])
eval_normal.append(file.split('_test_')[1].split('_')[0] == 'normal')
eval_files.append(file_path)
eval_domains.append(file.split('_')[2])
eval_atts.append('_'.join(file.split('.wav')[0].split('_')[6:]))
# reshape arrays and store
eval_ids = np.array(eval_ids)
eval_normal = np.array(eval_normal)
eval_files = np.array(eval_files)
eval_atts = np.array(eval_atts)
eval_domains = np.array(eval_domains)
eval_raw = np.expand_dims(np.array(eval_raw, dtype=np.float32), axis=-1)
np.save('eval_ids.npy', eval_ids)
np.save('eval_normal.npy', eval_normal)
np.save('eval_files.npy', eval_files)
np.save('eval_atts.npy', eval_atts)
np.save('eval_domains.npy', eval_domains)
np.save(str(target_sr) + '_eval_raw.npy', eval_raw)
# load test data
print('Loading test data')
if os.path.isfile(str(target_sr) + '_test_raw.npy'):
test_raw = np.load(str(target_sr) + '_test_raw.npy')
test_ids = np.load('test_ids.npy')
test_files = np.load('test_files.npy')
else:
test_raw = []
test_ids = []
test_files = []
eps = 1e-12
for label, category in enumerate(categories):
print(category)
for count, file in tqdm(enumerate(os.listdir("./eval_data/" + category + "/test")),
total=len(os.listdir("./eval_data/" + category + "/test"))):
file_path = "./eval_data/" + category + "/test/" + file
wav, fs = sf.read(file_path)
raw = librosa.core.to_mono(wav.transpose()).transpose()[:10 * target_sr]
test_raw.append(raw)
test_ids.append(category + '_' + file.split('_')[1])
test_files.append(file_path)
# reshape arrays and store
test_ids = np.array(test_ids)
test_files = np.array(test_files)
test_raw = np.expand_dims(np.array(test_raw, dtype=np.float32), axis=-1)
np.save('test_ids.npy', test_ids)
np.save('test_files.npy', test_files)
np.save(str(target_sr) + '_test_raw.npy', test_raw)
# encode ids as labels
le_4train = LabelEncoder()
train_ids_4train = np.array(['_'.join([train_ids[k], train_atts[k]]) for k in np.arange(train_ids.shape[0])])
eval_ids_4train = np.array(['_'.join([eval_ids[k], eval_atts[k]]) for k in np.arange(eval_ids.shape[0])])
le_4train.fit(np.concatenate([train_ids_4train, eval_ids_4train], axis=0))
num_classes_4train = len(np.unique(np.concatenate([train_ids_4train, eval_ids_4train], axis=0)))
train_labels_4train = le_4train.transform(train_ids_4train)
eval_labels_4train = le_4train.transform(eval_ids_4train)
le = LabelEncoder()
train_labels = le.fit_transform(train_ids)
eval_labels = le.transform(eval_ids)
test_labels = le.transform(test_ids)
num_classes = len(np.unique(train_labels))
# distinguish between normal and anomalous samples on development set
unknown_raw = eval_raw[~eval_normal]
unknown_labels = eval_labels[~eval_normal]
unknown_labels_4train = eval_labels_4train[~eval_normal]
unknown_files = eval_files[~eval_normal]
unknown_ids = eval_ids[~eval_normal]
unknown_domains = eval_domains[~eval_normal]
eval_raw = eval_raw[eval_normal]
eval_labels = eval_labels[eval_normal]
eval_labels_4train = eval_labels_4train[eval_normal]
eval_files = eval_files[eval_normal]
eval_ids = eval_ids[eval_normal]
eval_domains = eval_domains[eval_normal]
# training parameters
batch_size = 64
batch_size_test = 64
epochs = 100
aeons = 4
alpha = 1
n_subclusters = 16
ensemble_size = 10
# prepare scores and domain info
pred_eval = np.zeros((eval_raw.shape[0], np.unique(train_labels).shape[0]))
pred_unknown = np.zeros((unknown_raw.shape[0], np.unique(train_labels).shape[0]))
pred_test = np.zeros((test_raw.shape[0], np.unique(train_labels).shape[0]))
pred_train = np.zeros((train_labels.shape[0], np.unique(train_labels).shape[0]))
source_train = np.array([file.split('_')[3] == 'source' for file in train_files.tolist()])
source_eval = np.array([file.split('_')[3] == 'source' for file in eval_files.tolist()])
source_unknown = np.array([file.split('_')[3] == 'source' for file in unknown_files.tolist()])
for k_ensemble in np.arange(10):
y_train_cat = keras.utils.np_utils.to_categorical(train_labels, num_classes=num_classes)
y_eval_cat = keras.utils.np_utils.to_categorical(eval_labels, num_classes=num_classes)
y_unknown_cat = keras.utils.np_utils.to_categorical(unknown_labels, num_classes=num_classes)
y_test_cat = keras.utils.np_utils.to_categorical(test_labels, num_classes=num_classes)
y_train_cat_4train = keras.utils.np_utils.to_categorical(train_labels_4train, num_classes=num_classes_4train)
y_eval_cat_4train = keras.utils.np_utils.to_categorical(eval_labels_4train, num_classes=num_classes_4train)
y_unknown_cat_4train = keras.utils.np_utils.to_categorical(unknown_labels_4train, num_classes=num_classes_4train)
# compile model
data_input, label_input, loss_output = model_emb_cnn(num_classes=num_classes_4train,
raw_dim=eval_raw.shape[1], n_subclusters=n_subclusters)
model = tf.keras.Model(inputs=[data_input, label_input], outputs=[loss_output])
model.compile(loss=[mixupLoss], optimizer=tf.keras.optimizers.Adam())
#print(model.summary())
for k in np.arange(aeons):
print('ensemble iteration: ' + str(k_ensemble+1))
print('aeon: ' + str(k+1))
# fit model
weight_path = 'wts_' + str(k+1) + 'k_' + str(target_sr) + '_' + str(k_ensemble+1) + '.h5'
if not os.path.isfile(weight_path):
model.fit(
[train_raw, y_train_cat_4train], y_train_cat_4train, verbose=1,
batch_size=batch_size, epochs=epochs,
validation_data=([eval_raw, y_eval_cat_4train], y_eval_cat_4train))
model.save(weight_path)
else:
model = tf.keras.models.load_model(weight_path,
custom_objects={'MixupLayer': MixupLayer, 'mixupLoss': mixupLoss,
'SCAdaCos': SCAdaCos,
'LogMelSpectrogram': LogMelSpectrogram})
# extract embeddings
emb_model = tf.keras.Model(model.input, model.layers[-3].output)
eval_embs = emb_model.predict([eval_raw, np.zeros((eval_raw.shape[0], num_classes_4train))], batch_size=batch_size)
train_embs = emb_model.predict([train_raw, np.zeros((train_raw.shape[0], num_classes_4train))], batch_size=batch_size)
unknown_embs = emb_model.predict([unknown_raw, np.zeros((unknown_raw.shape[0], num_classes_4train))], batch_size=batch_size)
test_embs = emb_model.predict([test_raw, np.zeros((test_raw.shape[0], num_classes_4train))], batch_size=batch_size)
# length normalization
x_train_ln = length_norm(train_embs)
x_eval_ln = length_norm(eval_embs)
x_test_ln = length_norm(test_embs)
x_unknown_ln = length_norm(unknown_embs)
# compute ASD scores
n_subclusters_gmm = n_subclusters
for j, lab in tqdm(enumerate(np.unique(train_labels)), total=len(np.unique(train_labels))):
if np.sum(train_labels == lab) > 1:
# domain mixup
x_train_ln_cp = np.copy(x_train_ln[source_train * (train_labels == lab)])
rand_target_idcs = np.random.randint(0, np.sum(~source_train * (train_labels == lab)),
np.sum(source_train * (train_labels == lab)))
rand_mix_coeffs = 0.5
x_train_ln_cp *= rand_mix_coeffs
x_train_ln_cp += (1 - rand_mix_coeffs) * x_train_ln[~source_train * (train_labels == lab)][
rand_target_idcs]
# train and evaluate GMMs
if np.sum(train_labels == lab) >= n_subclusters_gmm:
clf1 = GaussianMixture(n_components=n_subclusters_gmm, covariance_type='full',
reg_covar=1e-3).fit(
np.concatenate([x_train_ln_cp, x_train_ln[train_labels == lab]], axis=0))
else:
clf1 = GaussianMixture(n_components=np.sum(train_labels == lab), covariance_type='full',
reg_covar=1e-3).fit(
np.concatenate([x_train_ln_cp, x_train_ln[train_labels == lab]], axis=0))
pred_train[train_labels==lab, j] += -clf1.score_samples(x_train_ln[train_labels==lab])
if np.sum(eval_labels == lab) > 0:
pred_eval[eval_labels == lab, j] += -clf1.score_samples(x_eval_ln[eval_labels == lab])
pred_unknown[unknown_labels == lab, j] += -clf1.score_samples(x_unknown_ln[unknown_labels == lab])
if np.sum(test_labels == lab) > 0:
pred_test[test_labels == lab, j] += -clf1.score_samples(x_test_ln[test_labels == lab])
# print results for development set
print('#######################################################################################################')
print('DEVELOPMENT SET')
print('#######################################################################################################')
aucs = []
p_aucs = []
for j, cat in enumerate(np.unique(eval_ids)):
y_pred = np.concatenate([pred_eval[eval_labels == le.transform([cat]), le.transform([cat])],
pred_unknown[unknown_labels == le.transform([cat]), le.transform([cat])]],
axis=0)
y_true = np.concatenate([np.zeros(np.sum(eval_labels == le.transform([cat]))),
np.ones(np.sum(unknown_labels == le.transform([cat])))], axis=0)
auc = roc_auc_score(y_true, y_pred)
aucs.append(auc)
p_auc = roc_auc_score(y_true, y_pred, max_fpr=0.1)
p_aucs.append(p_auc)
print('AUC for category ' + str(cat) + ': ' + str(auc * 100))
print('pAUC for category ' + str(cat) + ': ' + str(p_auc * 100))
source_all = np.concatenate([source_eval[eval_labels == le.transform([cat])],
source_unknown[unknown_labels == le.transform([cat])]], axis=0)
auc = roc_auc_score(y_true[source_all], y_pred[source_all])
p_auc = roc_auc_score(y_true[source_all], y_pred[source_all], max_fpr=0.1)
print('AUC for source domain of category ' + str(cat) + ': ' + str(auc * 100))
print('pAUC for source domain of category ' + str(cat) + ': ' + str(p_auc * 100))
auc = roc_auc_score(y_true[~source_all], y_pred[~source_all])
p_auc = roc_auc_score(y_true[~source_all], y_pred[~source_all], max_fpr=0.1)
print('AUC for target domain of category ' + str(cat) + ': ' + str(auc * 100))
print('pAUC for target domain of category ' + str(cat) + ': ' + str(p_auc * 100))
print('####################')
aucs = np.array(aucs)
p_aucs = np.array(p_aucs)
for cat in categories:
mean_auc = hmean(aucs[np.array([eval_id.split('_')[0] for eval_id in np.unique(eval_ids)]) == cat])
print('mean AUC for category ' + str(cat) + ': ' + str(mean_auc * 100))
mean_p_auc = hmean(p_aucs[np.array([eval_id.split('_')[0] for eval_id in np.unique(eval_ids)]) == cat])
print('mean pAUC for category ' + str(cat) + ': ' + str(mean_p_auc * 100))
print('####################')
for cat in categories:
mean_auc = hmean(aucs[np.array([eval_id.split('_')[0] for eval_id in np.unique(eval_ids)]) == cat])
mean_p_auc = hmean(p_aucs[np.array([eval_id.split('_')[0] for eval_id in np.unique(eval_ids)]) == cat])
print('mean of AUC and pAUC for category ' + str(cat) + ': ' + str((mean_p_auc + mean_auc) * 50))
print('####################')
mean_auc = hmean(aucs)
print('mean AUC: ' + str(mean_auc * 100))
mean_p_auc = hmean(p_aucs)
print('mean pAUC: ' + str(mean_p_auc * 100))
"""
# print results for eval set
print('#######################################################################################################')
print('EVALUATION SET')
print('#######################################################################################################')
aucs = []
p_aucs = []
for j, cat in enumerate(np.unique(test_ids)):
y_pred = pred_test[test_labels == le.transform([cat]), le.transform([cat])]
y_true = np.array(pd.read_csv(
'./dcase2022_evaluator-main/ground_truth_data/ground_truth_' + cat.split('_')[0] + '_section_' + cat.split('_')[1] + '_test.csv', header=None).iloc[:, 1] == 1)
auc = roc_auc_score(y_true, y_pred)
aucs.append(auc)
p_auc = roc_auc_score(y_true, y_pred, max_fpr=0.1)
p_aucs.append(p_auc)
print('AUC for category ' + str(cat) + ': ' + str(auc * 100))
print('pAUC for category ' + str(cat) + ': ' + str(p_auc * 100))
source_all = np.concatenate([source_eval[eval_labels == le.transform([cat])],
source_unknown[unknown_labels == le.transform([cat])]], axis=0)
source_all = np.array(pd.read_csv(
'./dcase2022_evaluator-main/ground_truth_domain/ground_truth_' + cat.split('_')[0] + '_section_' + cat.split('_')[1] + '_test.csv', header=None).iloc[:, 1] == 0)
auc = roc_auc_score(y_true[source_all], y_pred[source_all])
p_auc = roc_auc_score(y_true[source_all], y_pred[source_all], max_fpr=0.1)
print('AUC for source domain of category ' + str(cat) + ': ' + str(auc * 100))
print('pAUC for source domain of category ' + str(cat) + ': ' + str(p_auc * 100))
auc = roc_auc_score(y_true[~source_all], y_pred[~source_all])
p_auc = roc_auc_score(y_true[~source_all], y_pred[~source_all], max_fpr=0.1)
print('AUC for target domain of category ' + str(cat) + ': ' + str(auc * 100))
print('pAUC for target domain of category ' + str(cat) + ': ' + str(p_auc * 100))
print('####################')
aucs = np.array(aucs)
p_aucs = np.array(p_aucs)
for cat in categories:
mean_auc = hmean(aucs[np.array([eval_id.split('_')[0] for eval_id in np.unique(eval_ids)]) == cat])
print('mean AUC for category ' + str(cat) + ': ' + str(mean_auc * 100))
mean_p_auc = hmean(p_aucs[np.array([eval_id.split('_')[0] for eval_id in np.unique(eval_ids)]) == cat])
print('mean pAUC for category ' + str(cat) + ': ' + str(mean_p_auc * 100))
print('####################')
for cat in categories:
mean_auc = hmean(aucs[np.array([eval_id.split('_')[0] for eval_id in np.unique(eval_ids)]) == cat])
mean_p_auc = hmean(p_aucs[np.array([eval_id.split('_')[0] for eval_id in np.unique(eval_ids)]) == cat])
print('mean of AUC and pAUC for category ' + str(cat) + ': ' + str((mean_p_auc + mean_auc) * 50))
print('####################')
mean_auc = hmean(aucs)
print('mean AUC: ' + str(mean_auc * 100))
mean_p_auc = hmean(p_aucs)
print('mean pAUC: ' + str(mean_p_auc * 100))
"""
# create challenge submission files
print('creating submission files')
sub_path = './submission'
if not os.path.exists(sub_path):
os.makedirs(sub_path)
for j, cat in enumerate(np.unique(test_ids)):
# anomaly scores
file_idx = test_labels == le.transform([cat])
results_an = pd.DataFrame()
results_an['output1'], results_an['output2'] = [[f.split('/')[-1] for f in test_files[file_idx]],
[str(s) for s in pred_test[file_idx, le.transform([cat])]]]
results_an.to_csv(sub_path + '/anomaly_score_' + cat.split('_')[0] + '_section_' + cat.split('_')[-1] + '_test.csv',
encoding='utf-8', index=False, header=False)
# decision results
train_scores = pred_train[train_labels == le.transform([cat]), le.transform([cat])]
threshold = np.percentile(train_scores, q=90)
decisions = pred_test[file_idx, le.transform([cat])] > threshold
results_dec = pd.DataFrame()
results_dec['output1'], results_dec['output2'] = [[f.split('/')[-1] for f in test_files[file_idx]],
[str(int(s)) for s in decisions]]
results_dec.to_csv(sub_path + '/decision_result_' + cat.split('_')[0] + '_section_' + cat.split('_')[-1] + '_test.csv',
encoding='utf-8', index=False, header=False)
print('####################')
print('>>>> finished! <<<<<')
print('####################')