-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
314 lines (259 loc) · 10.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import torch.nn.init as init
import os, models.facenet as facenet, sys
import json, time, random, torch
from models import classify
from models.classify import *
from models.discri import *
from models.generator import *
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.utils as tvls
from torchvision import transforms
from datetime import datetime
import dataloader
from torch.autograd import grad
device = "cuda"
class Tee(object):
def __init__(self, name, mode):
self.file = open(name, mode)
self.stdout = sys.stdout
sys.stdout = self
def __del__(self):
sys.stdout = self.stdout
self.file.close()
def write(self, data):
if not '...' in data:
self.file.write(data)
self.stdout.write(data)
self.flush()
def flush(self):
self.file.flush()
def init_dataloader(args, file_path, batch_size=64, mode="gan", iterator=False):
tf = time.time()
if mode == "attack":
shuffle_flag = False
else:
shuffle_flag = True
data_set = dataloader.ImageFolder(args, file_path, mode)
if iterator:
data_loader = torch.utils.data.DataLoader(data_set,
batch_size=batch_size,
shuffle=shuffle_flag,
drop_last=True,
num_workers=0,
pin_memory=True).__iter__()
else:
data_loader = torch.utils.data.DataLoader(data_set,
batch_size=batch_size,
shuffle=shuffle_flag,
drop_last=True,
num_workers=2,
pin_memory=True)
interval = time.time() - tf
print('Initializing data loader took %ds' % interval)
return data_set, data_loader
def load_pretrain(self, state_dict):
own_state = self.state_dict()
for name, param in state_dict.items():
if name.startswith("module.fc_layer"):
continue
if name not in own_state:
print(name)
continue
own_state[name].copy_(param.data)
def load_state_dict(self, state_dict):
own_state = self.state_dict()
for name, param in state_dict.items():
if name not in own_state:
print(name)
continue
own_state[name].copy_(param.data)
def load_json(json_file):
with open(json_file) as data_file:
data = json.load(data_file)
return data
def print_params(info, params, dataset=None):
print('-----------------------------------------------------------------')
print("Running time: %s" % datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
for i, (key, value) in enumerate(info.items()):
print("%s: %s" % (key, str(value)))
for i, (key, value) in enumerate(params.items()):
print("%s: %s" % (key, str(value)))
print('-----------------------------------------------------------------')
def save_tensor_images(images, filename, nrow = None, normalize = True):
if not nrow:
tvls.save_image(images, filename, normalize = normalize, padding=0)
else:
tvls.save_image(images, filename, normalize = normalize, nrow=nrow, padding=0)
def get_deprocessor():
# resize 112,112
proc = []
proc.append(transforms.Resize((112, 112)))
proc.append(transforms.ToTensor())
return transforms.Compose(proc)
def low2high(img):
# 0 and 1, 64 to 112
bs = img.size(0)
proc = get_deprocessor()
img_tensor = img.detach().cpu().float()
img = torch.zeros(bs, 3, 112, 112)
for i in range(bs):
img_i = transforms.ToPILImage()(img_tensor[i, :, :, :]).convert('RGB')
img_i = proc(img_i)
img[i, :, :, :] = img_i[:, :, :]
img = img.cuda()
return img
def get_model(attack_name, classes):
if attack_name.startswith("VGG16"):
T = classify.VGG16(classes)
elif attack_name.startswith("IR50"):
T = classify.IR50(classes)
elif attack_name.startswith("IR152"):
T = classify.IR152(classes)
elif attack_name.startswith("FaceNet64"):
T = facenet.FaceNet64(classes)
else:
print("Model doesn't exist")
exit()
T = torch.nn.DataParallel(T).cuda()
return T
def get_augmodel(model_name, nclass, path_T=None, dataset='celeba'):
if model_name=="VGG16":
model = VGG16(nclass)
elif model_name=="FaceNet":
model = FaceNet(nclass)
elif model_name=="FaceNet64":
model = FaceNet64(nclass)
elif model_name=="IR152":
model = IR152(nclass)
elif model_name =="efficientnet_b0":
model = classify.EfficientNet_b0(nclass)
elif model_name =="efficientnet_b1":
model = classify.EfficientNet_b1(nclass)
elif model_name =="efficientnet_b2":
model = classify.EfficientNet_b2(nclass)
model = torch.nn.DataParallel(model).cuda()
if path_T is not None:
ckp_T = torch.load(path_T)
model.load_state_dict(ckp_T['state_dict'], strict=True)
return model
def log_sum_exp(x, axis = 1):
m = torch.max(x, dim = 1)[0]
return m + torch.log(torch.sum(torch.exp(x - m.unsqueeze(1)), dim = axis))
# define "soft" cross-entropy with pytorch tensor operations
def softXEnt (input, target):
targetprobs = nn.functional.softmax (target, dim = 1)
logprobs = nn.functional.log_softmax (input, dim = 1)
return -(targetprobs * logprobs).sum() / input.shape[0]
class HLoss(nn.Module):
def __init__(self):
super(HLoss, self).__init__()
def forward(self, x):
b = F.softmax(x, dim=1) * F.log_softmax(x, dim=1)
b = -1.0 * b.sum()
return b
def freeze(net):
for p in net.parameters():
p.requires_grad_(False)
def unfreeze(net):
for p in net.parameters():
p.requires_grad_(True)
def gradient_penalty(x, y, DG):
# interpolation
shape = [x.size(0)] + [1] * (x.dim() - 1)
alpha = torch.rand(shape).cuda()
z = x + alpha * (y - x)
z = z.cuda()
z.requires_grad = True
o = DG(z)
g = grad(o, z, grad_outputs = torch.ones(o.size()).cuda(), create_graph = True)[0].view(z.size(0), -1)
gp = ((g.norm(p = 2, dim = 1) - 1) ** 2).mean()
return gp
def log_sum_exp(x, axis = 1):
m = torch.max(x, dim = 1)[0]
return m + torch.log(torch.sum(torch.exp(x - m.unsqueeze(1)), dim = axis))
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_GAN(dataset, gan_type, gan_model_dir, n_classes, z_dim, target_model):
G = Generator(z_dim)
if gan_type == True:
D = MinibatchDiscriminator(n_classes=n_classes)
else:
D = DGWGAN(3)
if gan_type == True:
path = os.path.join(os.path.join(gan_model_dir, dataset), target_model)
path_G = os.path.join(path, "improved_{}_G.tar".format(dataset))
path_D = os.path.join(path, "improved_{}_D.tar".format(dataset))
else:
path = os.path.join(gan_model_dir, dataset)
path_G = os.path.join(path, "{}_G.tar".format(dataset))
path_D = os.path.join(path, "{}_D.tar".format(dataset))
print('path_G',path_G)
print('path_D',path_D)
G = torch.nn.DataParallel(G).to(device)
D = torch.nn.DataParallel(D).to(device)
ckp_G = torch.load(path_G)
G.load_state_dict(ckp_G['state_dict'], strict=True)
ckp_D = torch.load(path_D)
D.load_state_dict(ckp_D['state_dict'], strict=True)
return G, D
def get_attack_model(args, args_json, eval_mode=False):
now = datetime.now() # current date and time
if not eval_mode:
log_file = "invertion_logs_{}_{}.txt".format(args.loss,now.strftime("%m_%d_%Y_%H_%M_%S"))
utils.Tee(os.path.join(args.log_path, log_file), 'w')
n_classes=args_json['dataset']['n_classes']
model_types_ = args_json['train']['model_types'].split(',')
checkpoints = args_json['train']['cls_ckpts'].split(',')
G, D = get_GAN(args_json['dataset']['name'],gan_type=args.improved_flag,
gan_model_dir=args_json['train']['gan_model_dir'],
n_classes=n_classes,z_dim=100,target_model=model_types_[0])
dataset = args_json['dataset']['name']
cid = args.classid.split(',')
# target and student classifiers
for i in range(len(cid)):
id_ = int(cid[i])
model_types_[id_] = model_types_[id_].strip()
checkpoints[id_] = checkpoints[id_].strip()
print('Load classifier {} at {}'.format(model_types_[id_], checkpoints[id_]))
model = get_augmodel(model_types_[id_],n_classes,checkpoints[id_],dataset)
model = model.to(device)
model = model.eval()
if i==0:
targetnets = [model]
else:
targetnets.append(model)
# p_reg
if args.loss=='logit_loss':
if model_types_[id_] == "IR152" or model_types_[id_]=="VGG16" or model_types_[id_]=="FaceNet64":
#target model
p_reg = os.path.join(args_json["dataset"]["p_reg_path"], '{}_{}_p_reg.pt'.format(dataset,model_types_[id_])) #'./p_reg/{}_{}_p_reg.pt'.format(dataset,model_types_[id_])
else:
#aug model
p_reg = os.path.join(args_json["dataset"]["p_reg_path"], '{}_{}_{}_p_reg.pt'.format(dataset,model_types_[0],model_types_[id_])) #'./p_reg/{}_{}_{}_p_reg.pt'.format(dataset,model_types_[0],model_types_[id_])
# print('p_reg',p_reg)
if not os.path.exists(p_reg):
_, dataloader_gan = init_dataloader(args_json, args_json['dataset']['gan_file_path'], 50, mode="gan")
from attack import get_act_reg
fea_mean_,fea_logvar_ = get_act_reg(dataloader_gan,model,device)
torch.save({'fea_mean':fea_mean_,'fea_logvar':fea_logvar_},p_reg)
else:
fea_reg = torch.load(p_reg)
fea_mean_ = fea_reg['fea_mean']
fea_logvar_ = fea_reg['fea_logvar']
if i == 0:
fea_mean = [fea_mean_.to(device)]
fea_logvar = [fea_logvar_.to(device)]
else:
fea_mean.append(fea_mean_)
fea_logvar.append(fea_logvar_)
# print('fea_logvar_',i,fea_logvar_.shape,fea_mean_.shape)
else:
fea_mean,fea_logvar = 0,0
# evaluation classifier
E = get_augmodel(args_json['train']['eval_model'],n_classes,args_json['train']['eval_dir'])
E.eval()
G.eval()
D.eval()
return targetnets, E, G, D, n_classes, fea_mean, fea_logvar