-
-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy path_did_sim.Rmd
33 lines (19 loc) · 793 Bytes
/
_did_sim.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Latent factor model (interactive fixed-effects model) [@xu2017generalized, @athey2022design]
$$
Y_{it} = \gamma_i \upsilon_t^T + \tau W_{it} + \epsilon_{it}
$$
where
$\gamma_i$ = vector of latent unit factors
$\upsilon_t$ = vector of latent time factors
In matrix notation,
$$
\mathbf{Y} = \mathbf{L} + \tau \mathbf{W} + \mathbf{E}
$$
where
$\mathbf{L} = \mathbf{\Gamma\Upsilon}^T$
$\mathbf{E}$ = idiosyncratic component (i.e., error matrix)
$E(\mathbf{E} |\mathbf{W, L}) = 0$
No need for $\mathbf{L} \perp \mathbf{W}$ (treatment assignment may depend on the systematic component)
$\mathbf{E}_i \perp \mathbf{E}_{i'}$
$\mathbf{L}$ = systematic component
When $L_{it} = \alpha_i + \beta_t$ (additive form), DID can consistently estimate $\tau$ [@moon2017dynamic, @moon2015linear]