-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdectree.py
196 lines (162 loc) · 5.11 KB
/
dectree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Western Michigan University, Computer Science Department
# Mehdi Mohammadi
# February 27, 2014
# This program implements ID3 algorithm in python. The input should be a file
# containing the training data.
# The format of training data is as follows:
# A. At the first line put the attribute (column) names separated by comma.
# B. In the consequnce lines, attribue values must come in the order of
# attribute names and separated by comma.
#
# The output is a decision tree and its demonstration.
import math
class DecisionTree:
def read_data(self, filename):
fid = open(filename,"r")
data = []
d = []
for line in fid.readlines():
d.append(line.strip())
for d1 in d:
data.append(d1.split(","))
fid.close()
self.featureNames = self.get_features(data)
data = data[1:]
self.classes = self.get_classes(data)
data = self.get_pure_data(data)
return data,self.classes,self.featureNames
def get_classes(self, data):
data = data[1:]
classes = []
for d in range(len(data)):
classes.append(data[d][-1])
return classes
def get_features(self, data):
features = data[0]
features = features[:-1]
return features
def get_pure_data(self, dataRows):
dataRows = dataRows[1:]
for d in range(len(dataRows)):
dataRows[d] = dataRows[d][:-1]
return dataRows
def zeroList(self, size):
d = []
for i in range(size):
d.append(0)
return d
def getArgmax(self, arr):
m = max(arr)
ix = arr.index(m)
return ix
def getDistinctValues(self, dataList):
distinctValues = []
for item in dataList:
if(distinctValues.count(item) == 0):
distinctValues.append(item)
return distinctValues
def getDistinctValuesFromTable(self, dataTable, column):
distinctValues = []
for row in dataTable:
if(distinctValues.count(row[column]) == 0):
distinctValues.append(row[column])
return distinctValues
def getEntropy(self, p):
if(p != 0):
return -p * math.log2(p)
else:
return 0
def create_tree(self, trainingData, classes, features, maxlevel = -1, level=0):
nData = len(trainingData)
nFeatures = len(features)
try:
self.featureNames
except:
self.featureNames = features
newClasses = self.getDistinctValues(classes)
frequency = self.zeroList(len(newClasses))
totalEntropy = 0
index = 0
for aclass in newClasses:
frequency[index] = classes.count(aclass)
prob = float(frequency[index])/nData
totalEntropy += self.getEntropy(prob)
index += 1
default = classes[self.getArgmax(frequency)]
if(nData == 0 or nFeatures == 0 or (maxlevel >= 0 and level > maxlevel)):
return default
elif classes.count(classes[0]) == nData:
return classes[0]
else:
gain = self.zeroList(nFeatures)
for feature in range(nFeatures):
g = self.getGain(trainingData, classes, feature)
gain[feature] = totalEntropy - g
bestFeature = self.getArgmax(gain)
newTree = {features[bestFeature]:{}}
values = self.getDistinctValuesFromTable(trainingData, bestFeature)
for value in values:
newdata = []
newClasses = []
index = 0
for row in trainingData:
if row[bestFeature] == value:
if bestFeature == 0:
newRow = row[1:]
newNames = features[1:]
elif bestFeature == nFeatures:
newRow = row[:-1]
newNames = features[:-1]
else:
newRow = row[:bestFeature]
newRow.extend(row[bestFeature + 1:])
newNames = features[:bestFeature]
newNames.extend(features[bestFeature+1:])
newdata.append(newRow)
newClasses.append(classes[index])
index += 1
subtree = self.create_tree(newdata, newClasses, newNames, maxlevel, level + 1)
newTree[features[bestFeature]][value] = subtree
return newTree
print(newClasses)
def getGain(self, data, classes, feature):
gain = 0
ndata = len(data)
values = self.getDistinctValuesFromTable(data, feature)
featureCounts = self.zeroList(len(values))
entropy = self.zeroList(len(values))
valueIndex = 0
for value in values:
dataIndex = 0
newClasses = []
for row in data:
if row[feature] == value:
featureCounts[valueIndex] += 1
newClasses.append(classes[dataIndex])
dataIndex += 1
classValues = self.getDistinctValues(newClasses)
classCounts = self.zeroList(len(classValues))
classIndex = 0
for classValue in classValues:
for aclass in newClasses:
if aclass == classValue:
classCounts[classIndex] +=1
classIndex += 1
for classIndex in range(len(classValues)):
pr = float(classCounts[classIndex])/sum(classCounts)
entropy[valueIndex] += self.getEntropy(pr)
pn = float(featureCounts[valueIndex])/ndata
gain = gain + pn * entropy[valueIndex]
valueIndex += 1
return gain
def showTree(self, dic, seperator):
if(type(dic)==dict):
for item in dic.items():
print(seperator, item[0])
self.showTree(item[1], seperator + " | ")
else:
print(seperator + " -> (", dic +")")
tree = DecisionTree()
tr_data, clss, attrs = tree.read_data('resturant.dat')
tree1 = tree.create_tree(tr_data, clss, attrs)
tree.showTree(tree1, ' ')