-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplay_against_rl.py
54 lines (47 loc) · 1.6 KB
/
play_against_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import numpy as np
from baseGame import Connect4
from RL_agent import DQN, DQNAgent
def load_trained_agent(model_path):
env = Connect4()
state_size = env.rows * env.cols
action_size = env.cols
agent = DQNAgent(state_size, action_size)
agent.policy_net.load_state_dict(torch.load(model_path))
agent.policy_net.eval()
return agent
def play_against_rl():
env = Connect4()
agent = load_trained_agent("connect4_dqn.pth")
while True:
env.reset()
done = False
while not done:
env.render()
if env.current_player == 1:
while True:
try:
move = int(input("Enter your move (0-6): "))
if env.is_valid_move(move):
break
else:
print("Invalid move. Try again.")
except ValueError:
print("Invalid input. Please enter a number between 0 and 6.")
else:
state = np.array(env.get_state()).flatten()
valid_moves = env.get_valid_moves()
move = agent.get_action(state, valid_moves)
_, reward, done, _ = env.make_move(move)
env.render()
if env.winner == 1:
print("You win!")
elif env.winner == 2:
print("RL agent wins!")
else:
print("It's a draw!")
play_again = input("Play again? (y/n): ").lower()
if play_again != 'y':
break
if __name__ == "__main__":
play_against_rl()