Skip to content

Latest commit

 

History

History
286 lines (272 loc) · 16.5 KB

TeachingStatistics.md

File metadata and controls

286 lines (272 loc) · 16.5 KB
name topic maintainer email version source
TeachingStatistics
Teaching Statistics
Paul Northrop
p.northrop@ucl.ac.uk
2025-03-05

This CRAN task view gives information about packages with features that are designed to assist with the teaching of Statistics. It is not concerned with the teaching of R itself. A few of these packages are listed in other task views, but only the r view("Bayesian") task view has a section devoted explicitly to teaching (Bayesian) Statistics.

The packages are grouped into three broad topics: teaching, examination and packages associated with Statistics books. The latter is for books that are general enough to be of potential interest to a wide audience of teachers of Statistics. They should concern models and methods with wide applicability and not be tied closely to a particular application.

If you think that a package is missing from the list, or have any other comments or suggestions, then please contact the maintainer, either via e-mail or by submitting an issue or pull request in the GitHub repository linked above.

Teaching

  • r pkg("Rcmdr", priority = "core") provides a GUI for R, based on the tcltk package. A point-and-click interface loads data and calls R functions to perform the kinds of analyses involved in introductory Statistics courses. More advanced and specialized analysis are also available, some of them via plug-ins. The R commands are shown in the console. See the The R Commander homepage for more information.
  • r pkg("swirl") uses the R console to provide an interactive learning environment for students to learn Statistics. Students select courses to download from the r github("swirldev/swirl_courses") GitHub page and are provided with immediate feedback as they work. A variety of topics are available, under the general headings of Exploratory Data Analysis, Statistical Inference and Regression Models. Teachers can author and share their own swirl courses using the r pkg("swirlify") package. See also the swirl home page.
  • r pkg("mosaic", priority = "core") contains a wide range of tools to assist in teaching of basic, and more advanced ideas and techniques in mathematics, statistics, computation and modelling. Key aspects are the provision of functions that enable beginners easily to perform tasks that would otherwise be difficult and the use of simulation to illustrate randomization-based inference. See the Project MOSAIC homepage for more information.
  • r pkg("learnr") makes it easy to turn any R Markdown document into an interactive tutorial, containing narrative, figures, equations, exercises, videos and/or interactive shiny components. See the learnr homepage for more information.
  • r pkg("xplain") can be used to provide bespoke interactive interpretations of the output from statistics functions. This information needs to be provided by the instructor in XML format and may contain R code, to tailor the explanation to the specific results. See the xplain website for a tutorial and cheatsheet.
  • r pkg("animation", priority = "core") provides functions to produce animations relating to a wide range of topics in Statistics, Data Mining and Machine Learning. These animations, or a sequence of images generated by the user, may be exported to a variety of formats.
  • r pkg("gganimate") animates plots produced by r pkg("ggplot2"). It can be used to render the plots into an animation, such as a GIF or MP4 video .
  • r pkg("smovie") provides movies to illustrate concepts in Statistics. Topics covered are: probability distributions; sampling distributions of the mean (cf. central limit theorem), the maximum (cf. extremal types theorem) and the (Fisher transformation of the) correlation coefficient; simple linear regression; hypothesis testing.
  • r pkg("visualize") provides graphs of the pdf/pmf of various continuous and discrete probability distributions, annotated with the mean and variance of the distribution. Shading is used to indicate an interval (lower tail, upper tail, two-tailed or a user-supplied interval) within which the random variable lies with a user-supplied probability.
  • r pkg("LearnBayes") provides functions and to illustrate the essential ideas of Bayesian inference, such as the roles of the prior, likelihood and posterior; posterior predictive checking and predictive inference, and several example datasets.
  • r pkg("shinybrms") provides a shiny app for fitting various types of Bayesian regression models using the brms package. Help text leads the user through the steps of uploading a dataset, specifying a likelihood, setting a prior distribution and making inferences about the posterior distribution. See the package README file and the Getting started page.
  • r pkg("TeachingDemos") Provides a wide range of static and interactive plots to demonstrate statistical concepts, including: coin tossing and dice rolling; confidence intervals; various aspects of hypothesis testing; the central limit theorem; maximum likelihood estimation; scatterplot smoothing; histograms; correlation and simple linear regression; Box-Cox transformation.
  • r pkg("distrTeach") provides plots to illustrate the Central Limit Theorem (CLT) and the Law of Large Numbers (LLN). The effects on the CLT plots of changing inputs can be shown using a Tcl/Tk-based widget.
  • r pkg("BetaBit") provides games for students to play in the R console, including one that involves data-cleaning and regression modelling. See the BetaBit home page .
  • r pkg("DALEX") provides functions to explore and understand predictive models. The DALEX GitHub page includes two teaching-related showcases.
  • r pkg("agricolae") provides functionality assist the teaching of the design and analysis of statistical experiments, with an emphasis on agricultural field experiments. Designs constructed by r pkg("agricolae") can be visualised using r pkg("agricolaeplotr").
  • r pkg("LearningRlab") is designed to help teach basic statistics to secondary and baccalaureate students. It has functions that provide step-by-step explanations of statistical calculations and functions that prompt the student to perform their own calculations. See the package vignette for examples.
  • r pkg("dsld") motivates statistics learners by posing and solving real-life statistical problems involving discrimination. It includes the Quarto textbook Data Science Looks at Discrimination as a tutorial on the statistical concepts.

Examination

  • r pkg("exams", priority = "core") provides a framework for the automatic random generation of exams and self-study materials from a pool of exercises composed using either Sweave (.Rnw) or R markdown (.Rmd) formats. R code can be used to generate exercise elements dynamically. Questions can be formatted for use in a variety of e-learning platforms or output as documents, for example a PDF file, for which. Scans of PDF answer sheets can be marked automatically. See also the R/exams homepage
  • r pkg("ProfessR") creates multiple choice exams from a pool of exercises organised in ASCII test files. Multiple versions of an exam can be created by randomizing the questions and the choices of answers.
  • r pkg("rqti") creates exercises and exams in adherence to the QTI v2.1 standard directly from R. Users have the flexibility to render the exercises either locally (using qti.js) or integrate them seamlessly into the OPAL learning management system. Exercises can be created as R Markdown files or as rqti S4 classes. See also the rqti homepage.
  • r pkg("TexExamRandomizer") enables the randomization of questions created using LaTeX's document class for preparing exams. Spreadsheets containing students' answers can be marked automatically.

Packages associated with Statistics books

The following packages are associated with textbooks that are of potential interest to a general statistical audience, rather than being specific to a particular application area. The general principle for inclusion is that the package is likely to be of direct use in the teaching of statistical methods. Official publisher links are provided where possible and, in some cases, a link to further resources.

Links