-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPyMaze.py
354 lines (296 loc) · 11.5 KB
/
PyMaze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import pygame
import time
import math
from pygame.locals import *
from functools import wraps
from enum import Enum
from collections import defaultdict
from random import randint
class Color(Enum):
white = (255,255,255)
black = (0,0,0)
purple= (255,0,255)
red = (255,0,0)
blue = (0,0,255)
green = (0,255,0)
class Direction(Enum):
up = 1
right = 2
down = 3
left = 4
Directions = set([x for x in Direction])
#wrapper around pygame for easier interfacing
class GraphViz:
def __init__(self, windowSize):
self.size = self.width, self.height = windowSize
pygame.init()
self._display_surf = pygame.display.set_mode(self.size, pygame.HWSURFACE | pygame.DOUBLEBUF)
self._running = True
def super_event(self, event):
if event.type == pygame.QUIT:
self._running = False
else:
self.on_event(event)
def on_event(self, event):
pass
def on_loop(self):
for event in pygame.event.get():
self.super_event(event)
self.render()
def render(self):
pygame.display.update()
def on_cleanup(self):
pygame.quit()
def start(self):
self._running = True
pygame.event.post(pygame.event.Event(pygame.USEREVENT))
while(self._running):
self.on_loop()
#width x height board w/ drawing functions
class Board(GraphViz):
def __init__(self, windowSize, numTiles, wallSize):
if windowSize != None:
super().__init__(windowSize)
self.no_visuals = False
self._tileSize = (self.width/numTiles[0] - wallSize[0]/numTiles[0], self.height/numTiles[1] - wallSize[1]/numTiles[0])
self._innerSize = (self._tileSize[0] - wallSize[0], self._tileSize[1] - wallSize[1])
self._wallSize = wallSize
self._numTiles = numTiles
def genTile(self, pos, color=Color.white.value, timeout=0, dirs=None):
if self.no_visuals:
return
paths = self.vertexToDirs(pos) if dirs == None else dirs
pos = self.toXY(pos)
rect = pygame.Rect((self._wallSize[0] + pos[0]*self._tileSize[0], self._wallSize[1] + pos[1]*self._tileSize[1]), self._innerSize)
rec2 = None
self._display_surf.fill(color, rect=rect)
for path in paths:
if path == Direction.up:
rec2 = rect.move(0, -self._wallSize[1]-1)
elif path == Direction.right:
rec2 = rect.move(self._wallSize[0]+1, 0)
elif path == Direction.down:
rec2 = rect.move(0, self._wallSize[1]+1)
elif path == Direction.left:
rec2 = rect.move(-self._wallSize[0]-1, 0)
self._display_surf.fill(color, rect=rec2)
self.on_loop()
time.sleep(timeout/1000)
def getNeighbors(self, s):
neighbors = []
if (s/self._numTiles[0] - 1) >= 0:
neighbors.append(s-self._numTiles[0])
if (s%self._numTiles[0] + 1) < self._numTiles[0]:
neighbors.append(s+1)
if (s/self._numTiles[0] + 1) < self._numTiles[1]:
neighbors.append(s+self._numTiles[0])
if (s%self._numTiles[0] - 1) >= 0:
neighbors.append(s-1)
return neighbors
def toXY(self, s):
return (int(s%self._numTiles[0]), int(s/self._numTiles[0]))
def toIndex(self, xy):
return xy[1]*self._numTiles[0] + xy[0]
def on_event(self, event):
pass
def generate(self):
pass
def solve(self):
pass
#holds the vertices and edges
class Graph(object):
def __init__(self, graph_dict=None):
if graph_dict == None:
graph_dict = {}
self._graph_dict = graph_dict
def vertices(self):
return list(self._graph_dict.keys())
def edges(self):
return self.generate_edges()
def matrix(self):
return self.generate_matrix()
def edge(self, vertex):
return self._graph_dict[vertex]
def add_vertex(self, vertex):
if vertex not in self._graph_dict:
self._graph_dict[vertex] = []
def add_edge(self, edge):
edge = set(edge)
(vertex1, vertex2) = tuple(edge)
if vertex1 in self._graph_dict:
self._graph_dict[vertex1].append(vertex2)
else:
self._graph_dict[vertex1] = [vertex2]
if vertex2 in self._graph_dict:
self._graph_dict[vertex2].append(vertex1)
else:
self._graph_dict[vertex2] = [vertex1]
def generate_edges(self):
edges = []
for vertex in self._graph_dict:
for neighbour in self._graph_dict[vertex]:
if {neighbour, vertex} not in edges:
edges.append({vertex, neighbour})
return edges
def generate_matrix(self):
matrix = [[math.inf]*len(self.vertices()) for i in range(len(self.vertices()))]
for vertex in self._graph_dict:
matrix[vertex][vertex] = 0
for neighbour in self._graph_dict[vertex]:
matrix[vertex][neighbour] = 1
matrix[neighbour][vertex] = 1
return matrix
#Maze class, brings together graph and Board
class Maze(Board, Graph):
class State(Enum):
init = 0
generate = 1
solve = 2
busy = 3
quit = 4
def __init__(self, windowSize, numTiles, wallSize=(1,1)):
Board.__init__(self, windowSize, numTiles, wallSize)
Graph.__init__(self)
self._state = self.State.init
self._numVertices = numTiles[0]*numTiles[1]
self._rows = numTiles[0]
self._columns = numTiles[1]
for v in range(self._numVertices):
self.add_vertex(v)
self.genAlg = None
self.solveAlg = None
self.cont = True
def vertexToDirs(self, v1):
dirs = set()
if v1 not in self._graph_dict:
return dirs
for v2 in self._graph_dict[v1]:
if (v1 - self._numTiles[0]) == v2:
dirs.add(Direction.up)
elif (v1 + 1) == v2:
dirs.add(Direction.right)
elif (v1 + self._numTiles[0]) == v2:
dirs.add(Direction.down)
elif (v1 - 1) == v2:
dirs.add(Direction.left)
return dirs
def edgeToDir(self, v1, v2):
if (v1 - self._numTiles[0]) == v2:
return Direction.up
elif (v1 + 1) == v2:
return Direction.right
elif (v1 + self._numTiles[0]) == v2:
return Direction.down
elif (v1 - 1) == v2:
return Direction.left
else:
return None
def dirToIndex(self, v, dir):
if dir == Direction.up:
return v - self._numTiles[0] if v - self._numTiles[0] >= 0 else None
elif dir == Direction.right:
return v + 1 if v%self._numTiles[0] + 1 < self._numTiles[0] else None
elif dir == Direction.down:
return v + self._numTiles[0] if v + self._numTiles[0] < self._numVertices else None
elif dir == Direction.left:
return v - 1 if v%self._numTiles[0] - 1 >= 0 else None
def on_event(self, event):
if event.type == pygame.KEYDOWN and event.key == pygame.K_SPACE:
if self._state == self.State.busy:
return
self.cont = True
pygame.event.post(pygame.event.Event(pygame.USEREVENT))
elif event.type == pygame.USEREVENT and self.cont:
self.cont = False
if self._state == self.State.init:
if self.selectAlg("Select Generation Algorithm, or q for quit:", "generate") == 'q':
pygame.event.post(pygame.event.Event(pygame.USEREVENT+1))
return
for event in pygame.event.get():
pass #ignore events
self._state = self.State.generate
elif self._state == self.State.generate:
self._display_surf.fill(Color.black.value)
self._state = self.State.busy
self.genAlg(self)
if self.selectAlg("Select Solve Algorithm, or q for quit:", "solve") == 'q':
pygame.event.post(pygame.event.Event(pygame.USEREVENT+1))
return
for event in pygame.event.get():
pass #ignore events
self._state = self.State.solve
elif self._state == self.State.solve:
self._state = self.State.busy
path = self.solveAlg(self)
vn = 1
for v in range(0, len(path)-1):
self.genTile(path[v], Color.green.value, dirs=[self.edgeToDir(path[v],path[vn])])
vn += 1
self.genTile(path[-1], Color.green.value)
pygame.event.post(pygame.event.Event(pygame.USEREVENT+1))
elif event.type == pygame.USEREVENT+1:
self._state = self.State.init
Graph.__init__(self)
self.cont = True
self._running = False
def selectAlg(self, prompt, mode):
algs = self.genAlgs if mode == "generate" else self.solveAlgs
prompt += " ("
for i, alg in enumerate(algs):
if alg[-1] != '+':
if i != 0:
prompt += " | "
prompt += alg
if mode == 'generate':
prompt += '[+]'
prompt += ")\n"
val = None
while val == None:
val = input(prompt)
if val == 'q':
return 'q'
val = algs[val]
if mode == "generate":
self.genAlg = val
elif mode == "solve":
self.solveAlg = val
return None
def rngBreakWalls(self, count):
for i in range(count):
v = randint(0, self._numVertices-1)
newEdges = list(Directions - self.vertexToDirs(v))
e = None
if len(newEdges) == 0:
continue
elif len(newEdges) == 1:
e = newEdges[0]
else:
e = newEdges[randint(0, len(newEdges)-1)]
v2 = self.dirToIndex(v, e)
if v2:
self.add_edge((v, v2))
self.genTile(v)
#decorator to make incorporating graph algorithms into the class easier
def add_method(cls, attr):
def decorator(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
return func(self, *args, **kwargs)
exists = getattr(cls, attr, None)
if exists is None:
setattr(cls, attr, defaultdict(lambda: None))
getattr(cls, attr)[func.__name__] = wrapper
if attr == 'genAlgs':
@wraps(func)
def wrapper(self, *args, **kwargs):
ret = func(self, *args, **kwargs)
rngBreakWalls(self, int(self._numVertices/20))
return ret
getattr(cls, attr)[func.__name__ + '+'] = wrapper
return decorator
#decorator to make generating mazes easier
def generate():
return add_method(Maze, 'genAlgs')
#decorator to make solving mazes easier
def solve():
return add_method(Maze, 'solveAlgs')