-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy patheval.py
62 lines (50 loc) · 2.13 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import torch
import torch.utils.data as data
from torchvision import transforms
from data_loader import get_segmentation_dataset
from models.fast_scnn import get_fast_scnn
from utils.metric import SegmentationMetric
from utils.visualize import get_color_pallete
from train import parse_args
class Evaluator(object):
def __init__(self, args):
self.args = args
# output folder
self.outdir = 'test_result'
if not os.path.exists(self.outdir):
os.makedirs(self.outdir)
# image transform
input_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([.485, .456, .406], [.229, .224, .225]),
])
# dataset and dataloader
val_dataset = get_segmentation_dataset(args.dataset, split='val', mode='testval',
transform=input_transform)
self.val_loader = data.DataLoader(dataset=val_dataset,
batch_size=1,
shuffle=False)
# create network
self.model = get_fast_scnn(args.dataset, aux=args.aux, pretrained=True, root=args.save_folder).to(args.device)
print('Finished loading model!')
self.metric = SegmentationMetric(val_dataset.num_class)
def eval(self):
self.model.eval()
for i, (image, label) in enumerate(self.val_loader):
image = image.to(self.args.device)
outputs = self.model(image)
pred = torch.argmax(outputs[0], 1)
pred = pred.cpu().data.numpy()
label = label.numpy()
self.metric.update(pred, label)
pixAcc, mIoU = self.metric.get()
print('Sample %d, validation pixAcc: %.3f%%, mIoU: %.3f%%' % (i + 1, pixAcc * 100, mIoU * 100))
predict = pred.squeeze(0)
mask = get_color_pallete(predict, self.args.dataset)
mask.save(os.path.join(self.outdir, 'seg_{}.png'.format(i)))
if __name__ == '__main__':
args = parse_args()
evaluator = Evaluator(args)
print('Testing model: ', args.model)
evaluator.eval()