-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeural_Net.py
254 lines (211 loc) · 7.99 KB
/
Neural_Net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import numpy as np
import matplotlib.pyplot as plt
X = np.genfromtxt('traindata.csv', delimiter=',')
Y = np.genfromtxt('trainlabel.csv', delimiter=',')
Y = Y.reshape((1, np.shape(Y)[0]))
Y = Y > 1.0
X = X.T
print(np.shape(X)) #X.shape == (# features, # training examples)
print(np.shape(Y)) #Y.shape == (1, # training examples)
test_data = np.genfromtxt('testdata.csv', delimiter=',')
test_label = np.genfromtxt('testlabel.csv', delimiter=',')
test_label = test_label.reshape((1, np.shape(test_label)[0]))
test_label = test_label > 1.0
test_data = test_data.T
#Normalize features
mean = X.mean(axis=0)
std = X.std(axis=0)
train_data = (X - mean) / std
test_mean = test_data.mean(axis=0)
test_std = test_data.std(axis=0)
test_data = (test_data - test_mean) / test_std
#X = None #assign to training set
#Y = None #assign to labels for X
shape_X = np.shape(X)
shape_Y = np.shape(Y)
m = np.shape(X)[1]
def sigmoid(z):
return 1 / (1 + np.exp(-(z)))
"""
Arguments:
X -- input dataset of shape (input size, number of examples)
Y -- labels of shape (output size, number of examples)
Returns:
n_x -- the size of the input layer
n_h -- the size of the hidden layer
n_y -- the size of the output layer """
def layer_sizes(X, Y):
n_x = np.shape(X)[0]
n_h = 4
n_y = np.shape(Y)[0]
return n_x, n_h, n_y
"""
Arguments:
X -- input dataset of shape (input size, number of examples)
Y -- labels of shape (output size, number of examples)
Returns:
params -- python dictionary containing your parameters:
W1 -- weight matrix of shape (n_h, n_x)
b1 -- bias vector of shape (n_h, 1)
W2 -- weight matrix of shape (n_y, n_h)
b2 -- bias vector of shape (n_y, 1) """
def initialize_parameters(X, Y):
n_x = np.shape(X)[0]
n_h = 4
n_y = np.shape(Y)[0]
print('Input layer size: ' + str(n_x))
print('Hidden layer size: ' + str(n_h))
print('Output layer size: ' + str(n_y))
W1 = np.random.randn(n_h, n_x) * 0.01 #initalize weights randomly to avoid symmetry
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros((n_y, 1))
assert (W1.shape == (n_h, n_x)) #ensure everything is the correct size
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
"""
Argument:
X -- input data of size (n_x, m)
parameters -- python dictionary containing your parameters (output of initialization function)
Returns:
A2 -- The sigmoid output of the second activation
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2" """
def forward_propagation(X, parameters):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
Z1 = W1.dot(X) + b1
A1 = np.tanh(Z1) #An = g(Wn * Xn-1 + bn) where g is the activation function
Z2 = W2.dot(A1) + b2
A2 = sigmoid(Z2) #A2.shape == (1, X.shape[1])
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return A2, cache
"""
Computes the cross-entropy cost given in equation (13)
Arguments:
A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
parameters -- python dictionary containing your parameters W1, b1, W2 and b2
Returns:
cost -- cross-entropy cost given equation (13) """
def compute_cost(A2, Y, parameters):
m = Y.shape[1] # number of example
cost = -(1 / m * np.sum(Y.dot(np.log(A2).T) + (1 - Y).dot(np.log(1 - A2).T)))
cost = np.squeeze(cost)
return cost
"""
preform backward propagation
Arguments:
parameters -- python dictionary containing our parameters
cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
X -- input data of shape (2, number of examples)
Y -- "true" labels vector of shape (1, number of examples)
Returns:
grads -- python dictionary containing your gradients with respect to different parameters """
def backward_propagation(parameters, cache, X, Y):
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
A1 = cache["A1"]
A2 = cache["A2"]
dZ2 = A2 - Y
dW2 = dZ2.dot(A1.T) / m
db2 = 1 / m * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = W2.T.dot(dZ2) * (1 - np.power(A1, 2))
dW1 = dZ1.dot(X.T) / m
db1 = 1 / m * np.sum(dZ1, axis=1, keepdims=True)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
"""
Updates parameters using the gradient descent update rule given above
Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients
Returns:
parameters -- python dictionary containing your updated parameters """
def update_parameters(parameters, grads, learning_rate=1.2):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
"""
Arguments:
X -- dataset of shape (2, number of examples)
Y -- labels of shape (1, number of examples)
n_h -- size of the hidden layer
num_iterations -- Number of iterations in gradient descent loop
print_cost -- if True, print the cost every 1000 iterations
Returns:
parameters -- parameters learnt by the model. They can then be used to predict. """
def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False):
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
parameters = initialize_parameters(X, Y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
costs = []
for i in range(0, num_iterations):
A2, cache = forward_propagation(X, parameters)
cost = compute_cost(A2, Y, parameters)
grads = backward_propagation(parameters, cache, X, Y)
parameters = update_parameters(parameters, grads, learning_rate=1.2)
# Print the cost every 1000 iterations
if print_cost and i % 1000 == 0:
print("Cost after iteration %i: %f" % (i, cost))
if i % 50 == 0:
costs.append(cost)
return parameters, costs
"""
Using the learned parameters, predicts a class for each example in X
Arguments:
parameters -- python dictionary containing your parameters
X -- input data of size (n_x, m)
Returns
predictions -- vector of predictions of our model (red: 0 / blue: 1) """
def predict(parameters, X):
A2, cache = forward_propagation(X, parameters)
predictions = (A2 > 0.5)
return predictions
def print_accuracy(parameters, X):
predictions = predict(parameters, X)
print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
parameters = initialize_parameters(X, Y)
A2, cache = forward_propagation(X, parameters)
grads = backward_propagation(parameters, cache, X, Y)
parameters, costs = nn_model(X, Y, 4, num_iterations=2000, print_cost=True)
plt.plot(costs)
plt.show()
predictions = predict(parameters, X)
print ('Accuracy train data: %d' % float((np.dot(Y,predictions.T)
+ np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
predictions = predict(parameters, test_data)
print ('Accuracy test data: %d' % float((np.dot(test_label,predictions.T)
+ np.dot(1-test_label,1-predictions.T))/float(test_label.size)*100) + '%')