-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlittle_spm.py
250 lines (202 loc) · 10.2 KB
/
little_spm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import argparse
import os, sys
from argparse import RawTextHelpFormatter
import cv2
import dicom2nifti
import imutils
import nibabel as nib
import nibabel.processing
from pathlib import Path
import numpy as np
import pydicom as dcm
import SimpleITK as sitk
from pyrobex.robex import robex
from scipy.ndimage import zoom
def rotate_dicom_seires(inputDirectory, degOfRotation):
dcmList = os.listdir(inputDirectory)
outputDirectory = inputDirectory + "_rotated"
os.makedirs(outputDirectory)
for imgName in dcmList:
path = os.path.join(inputDirectory, imgName)
dcm = sitk.ReadImage(path)
array = sitk.GetArrayFromImage(dcm)
imgArray = array[0]
rotate = imutils.rotate(imgArray, degOfRotation)
filtered_image = sitk.GetImageFromArray(rotate)
for key in dcm.GetMetaDataKeys():
filtered_image.SetMetaData(key, dcm.GetMetaData(key))
filtered_image.SetSpacing(dcm.GetSpacing())
writer = sitk.ImageFileWriter()
writer.KeepOriginalImageUIDOn()
writer.SetFileName(os.path.join(outputDirectory, imgName))
writer.Execute(filtered_image)
print(inputDirectory, 'saved successfully')
def convert_dcm_dir_to_nifti(inputDirectory):
dicom2nifti.dicom_series_to_nifti(inputDirectory, inputDirectory)
print("Complete", inputDirectory)
def command_iteration(method):
print(f"{method.GetOptimizerIteration():3} = {method.GetMetricValue():10.5f}")
def image_registration(input_img, template, iterations=50):
if not os.path.splitext(input_img)[1] == ".nii":
print(os.path.splitext(input_img)[1])
print("Usage:", sys.argv[0], "--registration --input <movingImage> --template <fixedImage>")
exit(0)
fixed = sitk.ReadImage(template, sitk.sitkFloat32)
moving = sitk.ReadImage(input_img, sitk.sitkFloat32)
transformDomainMeshSize = [8] * moving.GetDimension()
tx = sitk.BSplineTransformInitializer(fixed, transformDomainMeshSize)
R = sitk.ImageRegistrationMethod()
R.SetMetricAsCorrelation()
R.SetOptimizerAsLBFGSB(gradientConvergenceTolerance=1e-5,
numberOfIterations=iterations,
maximumNumberOfCorrections=5,
maximumNumberOfFunctionEvaluations=1000,
costFunctionConvergenceFactor=1e+7)
R.SetInitialTransform(tx, True)
R.SetInterpolator(sitk.sitkLinear)
R.AddCommand(sitk.sitkIterationEvent, lambda: command_iteration(R))
outTx = R.Execute(fixed, moving)
print("-------")
print(outTx)
print(f"Optimizer stop condition: {R.GetOptimizerStopConditionDescription()}")
print(f" Iteration: {R.GetOptimizerIteration()}")
print(f" Metric value: {R.GetMetricValue()}")
sitk.WriteTransform(outTx, sys.argv[3])
if ("SITK_NOSHOW" not in os.environ):
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(fixed)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetDefaultPixelValue(100)
resampler.SetTransform(outTx)
out = resampler.Execute(moving)
simg1 = sitk.Cast(sitk.RescaleIntensity(fixed), sitk.sitkUInt8)
simg2 = sitk.Cast(sitk.RescaleIntensity(out), sitk.sitkUInt8)
cimg = sitk.Compose(simg1, simg2, simg1 // 2. + simg2 // 2.)
sitk.Show(cimg, "ImageRegistration1 Composition")
moving_resampled = sitk.Resample(moving, fixed, outTx, sitk.sitkLinear, 0.0, moving.GetPixelID())
sitk.WriteImage(moving_resampled, Path(input_img).stem + "_re.nii")
sitk.WriteTransform(outTx, Path(input_img).stem + "_tfm.tfm")
print("Complete", input_img)
def brain_smoothing(input_img, fwhm):
if not os.path.splitext(input_img)[1] == ".nii":
print(os.path.splitext(input_img)[1])
print("Usage:", sys.argv[0], "--smoothing --input <niftiFile>")
exit(0)
img = nib.load(input_img)
smoothed_img = nib.processing.smooth_image(img, fwhm)
nib.save(smoothed_img, Path(input_img).stem + "_smth.nii")
print("Complete", input_img)
def brain_extraction(input_img):
if not os.path.splitext(input_img)[1] == ".nii":
print(os.path.splitext(input_img)[1])
print("Usage:", sys.argv[0], "--extract --input <niftiFile>")
exit(0)
image = nib.load(input_img)
stripped, mask = robex(image)
nib.save(stripped, Path(input_img).stem + '_stripped.nii')
nib.save(mask, Path(input_img).stem + '_mask.nii')
print("Complete", input_img)
def brain_normalization(input_img):
if not os.path.splitext(input_img)[1] == ".nii":
print(os.path.splitext(input_img)[1])
print("Usage:", sys.argv[0], "--normalize --input <niftiFile>")
exit(0)
input_img_nii = sitk.ReadImage(input_img, sitk.sitkFloat32)
input_img_nor = sitk.Normalize(input_img_nii)
sitk.WriteImage(input_img_nor, Path(input_img).stem + "_normal.nii")
print("Complete", input_img)
def brain_resize(input_img, x, y, z):
if not os.path.splitext(input_img)[1] == ".nii":
print(os.path.splitext(input_img)[1])
print("Usage:", sys.argv[0], "--resize --input <niftiFile> -x <x> -y <y> -z <z>")
exit(0)
image_nib = nib.load(input_img).get_fdata()
resized_image = zoom(image_nib, (x/image_nib.shape[0], y/image_nib.shape[1], z/image_nib.shape[2]))
image_nifti = nib.Nifti1Image(resized_image, np.eye(4))
nib.save(image_nifti, Path(input_img).stem + "_resize.nii")
print("Complete", input_img)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=
'Little SPM Written in Python\n\n'\
'1. Rotate Dicom Series\n'\
'\tpython little_spm.py --rotate --directory <sample directory> --angle <degree>\n'\
'\tex) python little_spm.py --rotate -d 15819775_T1 -a 3 \n\n'\
'2. Convert Dicom to Nifti\n'\
'\tpython little_spm.py --convert --directory <sample directory>\n'\
'\tex) python little_spm.py --convert -d 15819775_T1\n\n'\
'3. Image Registration\n'\
'\tpython little_spm.py --registration --input <nifti image> --template <nifti image> --iterations <numberOfIterations>\n'\
'\tex) python little_spm.py --registration -i 15819775.nii -t brain_atlas.nii\n\n'\
'4. Brain Smoothing\n'\
'\tpython little_spm.py --smoothing --input <nifti file> --fwhm <fwhm>\n'\
'\tex) python little_spm.py --smoothing -i 15819775_T1.nii -f 8\n\n'\
'5. Brain Extraction (Only run in Linux)\n'\
'\tpython little_spm.py --extract --input <nifti file>\n'\
'\tex) python little_spm.py --extract -i 15819775_T1.nii\n\n'\
'6. Normalization\n'\
'\tpython little_spm.py --normalize --input <nifti file>\n'\
'\tex) python little_spm.py --normalize -i 15819775_T1.nii\n\n'\
'7. Resize\n'\
'\tpython little_spm.py --resize --input <nifti file> -x <x> -y <y> -z <z>\n'\
'\tex) python little_spm.py --resize -i 15819775_T1.nii -x 160 -y 190 -z 224\n\n',
epilog="Written by Dodant",
formatter_class=RawTextHelpFormatter)
#Rotate
parser.add_argument('--rotate',
action='store_true',
help='Rotate Dicom Series')
parser.add_argument('-d', '--directory',
help='Single Sample Directory(Dicom Series)')
parser.add_argument('-a', '--angle',
type=int,
help='Rotation Angle: Positive Value - ACW / Negative Value - CW')
#Dicom to Nifti
parser.add_argument('--convert',
action='store_true',
help='Convert Sample(Dicom Series) to Nifti')
#Image Registration
parser.add_argument('--registration',
action='store_true')
parser.add_argument('-i', '--input',
help='Single Nifti File')
parser.add_argument('-t', '--template',
help='Fixed Brain Template for Registration')
parser.add_argument('--iterations',
type=int,
default=50)
#Brain Smoothing
parser.add_argument('--smoothing',
action='store_true')
parser.add_argument('-f', '--fwhm',
help="Full Width Half Max for Brain Smoothing",
type=int, default=6)
#Brain Stripping
parser.add_argument('--extract',
action='store_true',
help="Skill Stripping")
#Normalization
parser.add_argument('--normalize',
action='store_true')
#Resize
parser.add_argument('--resize',
action='store_true')
parser.add_argument('-x', type=int, default=160)
parser.add_argument('-y', type=int, default=192)
parser.add_argument('-z', type=int, default=224)
#ETC
parser.add_argument('-v', '--version', action='version', version='%(prog)s 1.3')
args = parser.parse_args()
if args.rotate:
rotate_dicom_seires(args.directory, args.angle)
if args.convert:
convert_dcm_dir_to_nifti(args.directory)
if args.registration:
image_registration(args.input, args.template, args.iterations)
if args.smoothing:
brain_smoothing(args.input, args.fwhm)
if args.extract:
brain_extraction(args.input)
if args.normalize:
brain_normalization(args.input)
if args.resize:
brain_resize(args.input, args.x, args.y, args.z)