-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgenerate.py
144 lines (127 loc) · 6.22 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import os
import random
import numpy as np
import torch
from tqdm import tqdm
from data_loader import get_loader
from model_pytorch import LMModel, load_openai_pretrained_model
from parallel import DataParallelModel
from text_utils import TextEncoder
def generate_outputs(model, pad_output, mask_output, text_encoder, device, beam, gen_len, k, decoding_strategy, min_len=None):
src_strs, tgt_strs, gen_strs = [], [], []
mask = mask_output
outputs = model(pad_output, mask_output, text_encoder, device, beam=beam, gen_len=gen_len, k=k, decoding_strategy=decoding_strategy, generate=True, min_len=min_len)
for generated_toks, input_toks, target_toks in outputs:
for idx in range(generated_toks.size(0)):
src_str = toks_to_str(input_toks[idx], text_encoder, is_input=True, mask=mask[idx])
src_strs.append(src_str)
tgt_str = toks_to_str(target_toks[idx], text_encoder)
tgt_strs.append(tgt_str)
gen_str = toks_to_str(generated_toks[idx], text_encoder)
gen_strs.append(gen_str)
return src_strs, tgt_strs, gen_strs
def toks_to_str(toks, text_encoder, is_input=False, mask=None):
str_rep = ''
end_tok = text_encoder.encoder['_delimiter_'] if is_input else text_encoder.encoder['_classify_']
for token in toks:
if token.item() == end_tok:# or x.item() == end_idx:
break
elif token.item() in text_encoder.decoder:
str_rep += text_encoder.decoder[token.item()].replace('</w>', ' ').replace('\n', '')
else:
str_rep += 'unk '
# This makes sure rouge scorers doesn't complain about no sentences
if not str_rep:
str_rep = "unk."
elif "." not in str_rep:
str_rep += "."
return str_rep
def init(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
def main(args):
init(args)
# Constants
n_ctx = args.n_ctx
data_dir = args.data_dir
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
print("device", device, "n_gpu", n_gpu)
text_encoder = TextEncoder(args.encoder_path, args.bpe_path)
encoder = text_encoder.encoder
n_vocab = len(text_encoder.encoder)
text_encoder.decoder[len(encoder)] = '_start_'
encoder['_start_'] = len(encoder)
text_encoder.decoder[len(encoder)] = '_delimiter_'
encoder['_delimiter_'] = len(encoder)
text_encoder.decoder[len(encoder)] = '_classify_'
encoder['_classify_'] = len(encoder)
n_special = 3 # XD: useless for language modeling task
vocab = n_vocab + n_special + n_ctx
lm_model = LMModel(args, vocab, n_ctx, return_probs=True, doc_embed=args.doc_model)
load_openai_pretrained_model(lm_model.transformer, n_ctx=n_ctx, n_special=n_special)
if args.checkpoint != "none":
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint["state_dict"]
for key in list(state_dict.keys()):
state_dict[key[7:]] = state_dict[key]
del state_dict[key]
pos_emb_mask = torch.zeros(1, 1, vocab)
pos_emb_mask[:, :, -n_ctx] = -1e12
state_dict['pos_emb_mask'] = pos_emb_mask
lm_model.load_state_dict(state_dict)
lm_model.to(device)
lm_model = DataParallelModel(lm_model)
train_bar = get_loader(os.path.join(data_dir, "val_encoded.jsonl"), n_gpu, encoder, num_workers=1, shuffle=True, max_size=args.n_iter)
srcs, hyps, refs = [], [], []
with torch.no_grad():
lm_model.eval()
for i, (pad_output, mask_output) in enumerate(tqdm(train_bar), 1):
src_strs, tgt_strs, gen_strs = generate_outputs(lm_model, pad_output, mask_output, text_encoder, device, args.beam, args.gen_len, args.k, args.decoding_strategy)
srcs.extend(src_strs)
hyps.extend(gen_strs)
refs.extend(tgt_strs)
for i in range(len(hyps)):
print("*" * 50)
print("Source: {}".format(srcs[i]))
print('Hypothesis: {}'.format(hyps[i]))
print("Reference: {}".format(refs[i]))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Standard
parser.add_argument('--data_dir', type=str, default='data/')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--n_iter', type=int, default=1)
parser.add_argument('--n_ctx', type=int, default=512)
parser.add_argument('--n_embd', type=int, default=768)
parser.add_argument('--n_head', type=int, default=12)
parser.add_argument('--n_layer', type=int, default=12)
parser.add_argument('--embd_pdrop', type=float, default=0.1)
parser.add_argument('--attn_pdrop', type=float, default=0.1)
parser.add_argument('--resid_pdrop', type=float, default=0.1)
parser.add_argument('--clf_pdrop', type=float, default=0.1)
parser.add_argument('--afn', type=str, default='gelu')
parser.add_argument('--encoder_path', type=str, default='src/model/encoder_bpe_40000.json')
parser.add_argument('--bpe_path', type=str, default='src/model/vocab_40000.bpe')
parser.add_argument('--checkpoint', type=str, default="none")
# Custom
parser.add_argument('--gen_len', type=int, default=110,
help='Length of the generation')
parser.add_argument('--k', type=int, default=10,
help='How many tokens to sample for various decoding strategies')
parser.add_argument('--inits', type=str, default='init.txt',
help='Text file containing prefixes to continue')
parser.add_argument('--decoding_strategy', type=int, default=0,
help='Which decoding strategy to use, described in the comments')
parser.add_argument('--beam', type=int, default=0,
help='If this is 0, decoding_strategy will be used, if this is greater than 0 beam search will be used with the specified beam size')
parser.add_argument('--doc_model', action='store_true',
help='Set to use the document embedding model')
parser.add_argument('--min_len', type=int, default=None,
help='Set to use the document embedding model')
args = parser.parse_args()
print(args)
main(args)