-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgenerate.py
69 lines (53 loc) · 2.49 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from utils.engine import DDPMSampler, DDIMSampler
from model.UNet import UNet
import torch
from utils.tools import save_sample_image, save_image
from argparse import ArgumentParser
def parse_option():
parser = ArgumentParser()
parser.add_argument("-cp", "--checkpoint_path", type=str, required=True)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--sampler", type=str, default="ddpm", choices=["ddpm", "ddim"])
# generator param
parser.add_argument("-bs", "--batch_size", type=int, default=16)
# sampler param
parser.add_argument("--result_only", default=False, action="store_true")
parser.add_argument("--interval", type=int, default=50)
# DDIM sampler param
parser.add_argument("--eta", type=float, default=0.0)
parser.add_argument("--steps", type=int, default=100)
parser.add_argument("--method", type=str, default="linear", choices=["linear", "quadratic"])
# save image param
parser.add_argument("--nrow", type=int, default=4)
parser.add_argument("--show", default=False, action="store_true")
parser.add_argument("-sp", "--image_save_path", type=str, default=None)
parser.add_argument("--to_grayscale", default=False, action="store_true")
args = parser.parse_args()
return args
@torch.no_grad()
def generate(args):
device = torch.device(args.device)
cp = torch.load(args.checkpoint_path)
# load trained model
model = UNet(**cp["config"]["Model"])
model.load_state_dict(cp["model"])
model.to(device)
model = model.eval()
if args.sampler == "ddim":
sampler = DDIMSampler(model, **cp["config"]["Trainer"]).to(device)
elif args.sampler == "ddpm":
sampler = DDPMSampler(model, **cp["config"]["Trainer"]).to(device)
else:
raise ValueError(f"Unknown sampler: {args.sampler}")
# generate Gaussian noise
z_t = torch.randn((args.batch_size, cp["config"]["Model"]["in_channels"],
*cp["config"]["Dataset"]["image_size"]), device=device)
extra_param = dict(steps=args.steps, eta=args.eta, method=args.method)
x = sampler(z_t, only_return_x_0=args.result_only, interval=args.interval, **extra_param)
if args.result_only:
save_image(x, nrow=args.nrow, show=args.show, path=args.image_save_path, to_grayscale=args.to_grayscale)
else:
save_sample_image(x, show=args.show, path=args.image_save_path, to_grayscale=args.to_grayscale)
if __name__ == "__main__":
args = parse_option()
generate(args)