-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathBST.h
464 lines (421 loc) · 15.1 KB
/
BST.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#ifndef CH3_BST_H
#define CH3_BST_H
// TODO: 1. change to smart pointer, 2. add iterator form
#include <stdexcept>
#include <vector>
#include <queue>
#include <iostream>
using std::runtime_error;
using std::queue;
using std::vector;
/**
* The {@code BST} class represents an ordered symbol table of generic
* key-value pairs.
* It supports the usual <em>put</em>, <em>get</em>, <em>contains</em>,
* <em>delete</em>, <em>size</em>, and <em>is-empty</em> methods.
* It also provides ordered methods for finding the <em>minimum</em>,
* <em>maximum</em>, <em>floor</em>, <em>select</em>, <em>ceiling</em>.
* It also provides a <em>keys</em> method for iterating over all of the keys.
* A symbol table implements the <em>associative array</em> abstraction:
* when associating a value with a key that is already in the symbol table,
* the convention is to replace the old value with the new value.
* Unlike {@link java.util.Map}, this class uses the convention that
* values cannot be {@code null}—setting the
* value associated with a key to {@code null} is equivalent to deleting the key
* from the symbol table.
* <p>
* This implementation uses an (unbalanced) binary search tree. It requires that
* the key type implements the {@code Comparable} interface and calls the
* {@code compareTo()} and method to compare two keys. It does not call either
* {@code equals()} or {@code hashCode()}.
* The <em>put</em>, <em>contains</em>, <em>remove</em>, <em>minimum</em>,
* <em>maximum</em>, <em>ceiling</em>, <em>floor</em>, <em>select</em>, and
* <em>rank</em> operations each take
* linear time in the worst case, if the tree becomes unbalanced.
* The <em>size</em>, and <em>is-empty</em> operations take constant time.
* Construction takes constant time.
* <p>
* For additional documentation, see <a href="https://algs4.cs.princeton.edu/32bst">Section 3.2</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
* For other implementations, see {@link ST}, {@link BinarySearchST},
* {@link SequentialSearchST}, {@link RedBlackBST},
* {@link SeparateChainingHashST}, and {@link LinearProbingHashST},
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
template<typename Key, typename Value>
class BST {
public:
/**
* Initializes an empty symbol table.
*/
BST() : root(nullptr) {}
/**
* Returns true if this symbol table is empty.
* @return {@code true} if this symbol table is empty; {@code false} otherwise
*/
bool isEmpty() {
return size() == 0;
}
/**
* Returns the number of key-value pairs in this symbol table.
* @return the number of key-value pairs in this symbol table
*/
int size() {
return size(root);
}
/**
* Does this symbol table contain the given key?
*
* @param key the key
* @return {@code true} if this symbol table contains {@code key} and
* {@code false} otherwise
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
bool contains(Key key) {
return contains(root, key);
}
/**
* Returns the value associated with the given key.
*
* @param key the key
* @return the value associated with the given key if the key is in the symbol table
* and {@code null} if the key is not in the symbol table
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
Value get(Key key) {
return get(root, key);
}
/**
* Inserts the specified key-value pair into the symbol table, overwriting the old
* value with the new value if the symbol table already contains the specified key.
* Deletes the specified key (and its associated value) from this symbol table
* if the specified value is {@code null}.
*
* @param key the key
* @param val the value
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
void put(Key key, Value val) {
root = put(root, key, val);
}
/**
* Removes the smallest key and associated value from the symbol table.
*
* @throws NoSuchElementException if the symbol table is empty
*/
void deleteMin() {
if (isEmpty()) throw runtime_error("Symbol table underflow");
root = deleteMin(root);
}
/**
* Removes the largest key and associated value from the symbol table.
*
* @throws NoSuchElementException if the symbol table is empty
*/
void deleteMax() {
if (isEmpty()) throw runtime_error("Symbol table underflow");
root = deleteMax(root);
}
/**
* Removes the specified key and its associated value from this symbol table
* (if the key is in this symbol table).
*
* @param key the key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
void delete_op(Key key) {
root = delete_op(root, key);
}
/**
* Returns the smallest key in the symbol table.
*
* @return the smallest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
Key min() {
if (isEmpty()) throw runtime_error("calls min() with empty symbol table");
return min(root)->key;
}
/**
* Returns the largest key in the symbol table.
*
* @return the largest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
Key max() {
if (isEmpty()) throw runtime_error("calls max() with empty symbol table");
return max(root)->key;
}
/**
* Returns the largest key in the symbol table less than or equal to {@code key}.
*
* @param key the key
* @return the largest key in the symbol table less than or equal to {@code key}
* @throws NoSuchElementException if there is no such key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
Key floor(Key key) {
if (isEmpty()) throw runtime_error("calls floor() with empty symbol table");
Node *x = floor(root, key);
if (x == nullptr) throw runtime_error("this key out of range!");
else return x->key;
}
/**
* Returns the smallest key in the symbol table greater than or equal to {@code key}.
*
* @param key the key
* @return the smallest key in the symbol table greater than or equal to {@code key}
* @throws NoSuchElementException if there is no such key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
Key ceiling(Key key) {
if (isEmpty()) throw runtime_error("calls ceiling() with empty symbol table");
Node *x = ceiling(root, key);
if (x == nullptr) throw runtime_error("this key out of range!");
else return x->key;
}
/**
* Return the key in the symbol table whose rank is {@code k}.
* This is the (k+1)st smallest key in the symbol table.
*
* @param k the order statistic
* @return the key in the symbol table of rank {@code k}
* @throws IllegalArgumentException unless {@code k} is between 0 and
* <em>n</em>–1
*/
Key select(int k) {
if (k < 0 || k >= size()) {
throw runtime_error("argument to select() is invalid: " + k);
}
Node *x = select(root, k);
return x->key;
}
/**
* Return the number of keys in the symbol table strictly less than {@code key}.
*
* @param key the key
* @return the number of keys in the symbol table strictly less than {@code key}
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
int rank(Key key) {
return rank(key, root);
}
/**
* Returns the number of keys in the symbol table in the given range.
*
* @param lo minimum endpoint
* @param hi maximum endpoint
* @return the number of keys in the symbol table between {@code lo}
* (inclusive) and {@code hi} (inclusive)
* @throws IllegalArgumentException if either {@code lo} or {@code hi}
* is {@code null}
*/
int size(Key lo, Key hi) {
if (lo > hi) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}
/**
* Returns the height of the BST (for debugging).
*
* @return the height of the BST (a 1-node tree has height 0)
*/
int height() {
return height(root);
}
/**
* Returns all keys in the symbol table as an {@code Iterable}.
* To iterate over all of the keys in the symbol table named {@code st},
* use the foreach notation: {@code for (Key key : st.keys())}.
*
* @return all keys in the symbol table
*/
void printKey() {
queue<Key> q;
Key lo = min(root), hi = max(root);
printKey(root, q, lo, min);
}
vector<Key> midOrder() {
vector<Key> res;
midOrder(root, res);
return res;
}
vector<Key> levelOrder() {
vector<Key> res;
levelOrder(root, res);
return res;
}
private:
class Node {
public:
Key key; // sorted by key
Value val; // associated data
Node *left, *right; // left and right subtrees
int size; // number of nodes in subtree
Node(Key key, Value val, int size) : key(key), val(val), size(size), left(nullptr), right(nullptr) {}
};
private:
// return number of key-value pairs in BST rooted at x
int size(Node *x) {
if (x == nullptr) return 0;
else return x->size;
}
// Returns the value associated with the given key.
Value get(Node *x, Key key) {
if (x == nullptr) throw runtime_error("this key is not in the tree!");
if (key < x->key) return get(x->left, key);
else if (key > x->key) return get(x->right, key);
else return x->val;
}
// Does this symbol table contain the given key?
bool contains(Node *x, Key key) {
if (x == nullptr) return false;
if (key < x->key) return get(x->left, key);
else if (key > x->key) return get(x->right, key);
else return true;
}
//Inserts the specified key-value pair into the symbol table, overwriting the old ,
// value with the new value if the symbol table already contains the specified key.
Node *put(Node *x, Key key, Value val) {
if (x == nullptr) return new Node(key, val, 1);
if (key < x->key) x->left = put(x->left, key, val);
else if (key > x->key) x->right = put(x->right, key, val);
else x->val = val;
x->size = 1 + size(x->left) + size(x->right);
return x;
}
// Removes the smallest key and associated value from the symbol table.
Node *deleteMin(Node *x) {
if (x->left == nullptr) {
Node *tmp = x->right;
delete (x);
return tmp;
}
x->left = deleteMin(x->left);
x->size = size(x->left) + size(x->right) + 1;
return x;
}
// Removes the largest key and associated value from the symbol table.
Node *deleteMax(Node *x) {
if (x->right == nullptr) {
Node *tmp = x->left;
delete (x);
return tmp;
}
x->right = deleteMax(x->right);
x->size = size(x->left) + size(x->right) + 1;
return x;
}
// Removes the specified key and its associated value from this symbol table (if the key is in this symbol table).
Node *delete_op(Node *x, Key key) {
if (x == nullptr) return nullptr;
if (key < x->key) x->left = delete_op(x->left, key);
else if (key > x->key) x->right = delete_op(x->right, key);
else {
if (x->right == nullptr) { // simple way
auto tmp = x->left;
delete (x);
return tmp;
}
if (x->left == nullptr) {
auto tmp = x->right;
delete (x);
return tmp;
}
Node *tmp = x;
x = min(tmp->right);
x->right = deleteMin(tmp->right);
x->left = tmp->left;
delete (tmp);
}
x->size = size(x->left) + size(x->right) + 1;
return x;
}
// Returns the smallest key in the symbol table.
Node *min(Node *x) {
if (x->left == nullptr) return x;
else return min(x->left);
}
// Returns the largest key in the symbol table.
Node *max(Node *x) {
if (x->right == nullptr) return x;
else return max(x->right);
}
// returns the largest key in the symbol table less than or equal to {@code key}.
Node *floor(Node *x, Key key) {
if (x == nullptr) return nullptr;
if (key == x->key) return x;
if (key < x->key) return floor(x->left, key);
Node *t = floor(x->right, key);
if (t != nullptr) return t;
else return x;
}
// Returns the smallest key in the symbol table greater than or equal to {@code key}.
Node *ceiling(Node *x, Key key) {
if (x == nullptr) return nullptr;
if (key == x->key) return x;
if (key < x->key) {
Node *t = ceiling(x->left, key);
if (t != nullptr) return t;
else return x;
}
return ceiling(x->right, key);
}
// Return key of rank k.
Node *select(Node *x, int k) {
if (x == nullptr) return nullptr;
int t = size(x->left);
if (t > k) return select(x->left, k);
else if (t < k) return select(x->right, k - t - 1);
else return x;
}
// Number of keys in the subtree less than key.
int rank(Key key, Node *x) {
if (x == nullptr) return 0;
if (key < x->key) return rank(key, x->left);
else if (key > x->key) return 1 + size(x->left) + rank(key, x->right);
else return size(x->left);
}
// Returns the height of the BST (for debugging).
int height(Node *x) {
if (x == nullptr) return -1;
return 1 + std::max(height(x->left), height(x->right));
}
// return all keys in the symbol table
void printKey(Node *x, queue<Key> &q, Key lo, Key hi) {
if (x == nullptr) return;
if (lo < x->key) printKey(x->left, q, lo, hi);
if (lo <= x->key && hi >= x->key) q.push(x->key);
if (hi > x->key) printKey(x->right, q, lo, hi);
}
void midOrder(Node *x, vector<Key> &res) {
if (x == nullptr) return;
if (x->left == nullptr && x->right == nullptr) {
res.push_back(x->key);
return;
}
if (x->left) midOrder(x->left, res);
res.push_back(x->key);
if (x->right) midOrder(x->right, res);
}
void levelOrder(Node *x, vector<Key> &res) {
if (x == nullptr) return;
queue<Node *> q;
q.push(x);
while (!q.empty()) {
int s = q.size();
for (int i = 0; i < s; ++i) {
auto tmp = q.front();
res.push_back(tmp->key);
q.pop();
if(tmp->left) q.push(tmp->left);
if(tmp->right) q.push(tmp->right);
}
}
}
private:
Node *root;
};
#endif //CH3_BST_H